老公闻不到我有腋臭(自己闻不出口臭 老公说口臭)
29
2025-02-24
深圳新闻网2024年7月24日讯(深圳商报首席记者 袁静娴)肠道是营养吸收和获取外界能量的主要场所,更是宿主和肠道菌群共生互作的舞台。一旦平衡被打破,过度营养吸收将引发肥胖等代谢性疾病。
近日,上海交通大学医学院附属瑞金医院联合华大生命科学研究院、华大基因智惠医学研究院在Cell Host & Microbe杂志发表研究成果,首次从大规模中国肥胖人群队列中筛选出潜在致胖菌——巨单胞菌,并揭示了其通过降解肠道肌醇、促进脂质吸收、导致肥胖发生的机制。研究团队鉴定了巨单胞菌与肥胖呈高度相关性,揭示了巨单胞菌与宿主遗传风险对肥胖发生存在叠加效应,并进一步阐明了巨单胞菌导致肥胖的机制。
基因组测序发现巨单胞菌与肥胖显著关联
既往研究多聚焦于有益菌的减少,鉴定了多个改善宿主代谢的新一代益生菌;然而,针对肥胖富集菌的研究目前仍十分缺乏,特定肥胖富集菌是否参与,以及如何参与人类肥胖发生仍不清楚。此外,遗传也是肥胖发生的重要因素,菌群和遗传对肥胖发生是否存在相互作用亦是领域关注的焦点问题。
在本次研究中,研究团队首先对631例肥胖人群以及374例正常对照人群粪便样本进行宏基因组测序分析,发现巨单胞菌属Megamonas在肥胖人群中显著富集。继而将1005例样本聚类为3种肠型,即以Bacteroides、Prevotella、Megamonas为核心菌属的B、P、M肠型。其中M肠型个体相较于其他肠型,展现出有更高的身体质量指数(BMI)及肥胖比例。Megamonas属的3个物种也均与BMI、体重、腰围呈显著正相关,且该结果在以色列人群队列中得到了验证,从而确立了巨单胞菌与肥胖表型的显著关联。
遗传叠加肠道菌群对肥胖有明显影响
遗传和肠道菌群是导致肥胖发生的两大关键因素。为深入探究巨单胞菌在不同肥胖遗传风险背景人群中的影响,研究团队对其中814名个体进行了全基因组测序,并量化遗传对肥胖的影响。研究发现,低遗传风险人群中,肠道菌群对BMI的解释度显著高于高遗传风险人群(8.9% vs 0.8%),并且肥胖与正常对照组的肠道菌群差异更为明显。这表明,在低遗传风险人群中,肠道微生物紊乱程度更大,对肥胖发生的影响也更大。最后,研究团队发现巨单胞菌对肥胖的影响呈现出与宿主遗传叠加的效应。
研究团队随后利用无特殊致病菌(SPF)小鼠、无菌小鼠、小肠类器官等多种模型充分论证了Megamonas rupellensis这一巨单胞菌代表物种的致肥胖作用及机制。动物模型实验结果发现,M. rupellensis对正常饮食喂养的SPF小鼠体重无显著影响,但显著促进了高脂饮食喂养SPF小鼠的体重增长及脂肪堆积。与此一致,在高脂喂养的无菌小鼠模型,M. rupellensis定植可显著提高小鼠体重增长百分比,并证实了其可明显促进肠道脂肪酸转运和脂质吸收。
机制上,研究团队深入分析了人群宏基因组数据的微生物代谢通路,在诸多肥胖富集通路中,进一步在体内外验证了M. rupellensis的肌醇降解能力。之后,研究团队论证了肌醇可抑制脂肪酸转运效率,这提示M. rupellensis的致胖效应可能是通过降解肌醇来介导的。研究团队进一步将肌醇降解通路首个关键限速酶iolG异源表达于大肠杆菌中,发现该改造后的工程大肠杆菌能显著降解小鼠肠道肌醇并促进肠道脂质吸收,从而论证了肠道微生物通过肌醇降解促进肠道脂质吸收与肥胖。
文章共同第一作者、华大基因杨芳明博士表示:“该研究通过开展大规模中国肥胖人群肠道宏基因组与宿主基因组研究,揭示了肠道巨单胞菌与肥胖发生的强关联,并证明了巨单胞菌诱发肥胖的机制,可为肥胖的诊疗提供全新的靶标菌。”
*仅供医学专业人士阅读参考
无语了家人们。
当你辛辛苦苦减肥,生怕多吃一口就热量超标,天天数着卡路里忍饥挨饿,有人却惦记着你吃不饱,拼命想办法帮你多吸收点营养,你啥感觉?
是我亲妈
太好心了,谢谢,真不用了,谢谢
最近,科学家们就找到了这样一种帮人“吃油”的肠道微生物。上海交通大学附属瑞金医院科学团队在《细胞·宿主与微生物》杂志发文,研究者们首次确认,肠道中的巨单胞菌(Megamonas)是一种致胖菌。
研究者们对1000余名中国人进行了宏基因组测序,发现肥胖者肠道中富集巨单胞菌。肠道巨单胞菌可以降解肌醇,进而促进肠道吸收脂质,帮人吃油。
谢谢,真不用了,谢谢
论文题图
管理身材,肠菌很有发言权。
此前,就有多项研究发现特定肠道微生物与人类肥胖之间存在关联,有阿克曼氏菌、拟杆菌和粪杆菌等帮人瘦身的好菌,也有瘤胃球菌和Dorea这样和肥胖正相关的坏菌。
实际致胖菌势力肯定不止这么点儿,研究者们这次专门针对国人进行了宏基因组测序分析,寻找新的适合中国宝宝体质的致胖菌。
研究参与者中631人肥胖,BMI平均35.68±4.58,年龄26.19岁,53.4%为男性;374人体重正常,BMI平均21,年龄31.06岁,53.2%为男性。这些人都没有使用代谢障碍相关药物。
研究者首先对这1005名参与者的粪便样本进行了鸟枪宏基因组测序,获得肠菌图谱,随后还对其中814名参与者进行了全基因组测序,用于区分遗传的影响。
与体重正常者相比,肥胖参与者的肠菌α多样性和组成的特异性显著降低。在数量排名前十的属中,研究者发现,只有巨单胞菌丰度显著增加了。
巨单胞菌显著增加
将参与者按照肠菌特征分类,可以分为以拟杆菌为核心的B型,以普雷沃氏菌为核心的P型和以巨单胞菌为核心的M型。毫不意外,M型人更容易肥胖。
通过全基因组测序,研究者可以计算肥胖相关风险位点的评分,判断参与者的遗传风险。两相对比之下,研究者发现,巨单胞菌的致胖作用与遗传还是叠加的。
你俩在这叠debuff经过我同意了吗。
巨单胞菌到底干啥了,还能逼人长胖?研究者针对分离出的一个影响显著的种M.rupellensis进行了实验。
研究者给无特定病原体(SPF)小鼠分别饲喂高脂饮食(HFD),并额外给小鼠移植巨单胞菌。神奇的事情发生了,相较没有巨单胞菌的小鼠,它们体重增幅更大,而且长的都是肥肉,瘦体重反而更轻。
有巨单胞菌的小鼠更容易长肥肉
吃的都是一样的食物,摄入量也没有差异,但有巨单胞菌的小鼠增加了更多的白色脂肪,血清瘦素、血糖和甘油三酯水平都显著增加了。
研究者发现,巨单胞菌小鼠粪便中的甘油三酯水平比较低,于是把怀疑的目光投射到了脂质代谢上。
对微生物代谢通路进行分析,研究者发现,巨单胞菌可以增强脂质转运和吸收,有6条肥胖相关的途径有巨单胞菌的深度参与,肌醇降解通路PWY-7237更是有81.3%都来自巨单胞菌的辛勤劳作。
肌醇是一种天然多元醇,可以抑制小肠吸收脂肪酸。缺乏肌醇与胰岛素抵抗、多囊卵巢综合征等代谢紊乱有关。
巨单胞菌就这样轻易把抑脂的肌醇降解了,对肠道端起油碗,来,走一个。
这项研究的结果并不是孤例,研究者在另外一个以色列成年人队列中得到了验证。此前也有较小规模的研究发现,意大利肥胖成年人和中国非酒精性脂肪性肝病(NAFLD)青少年中存在巨单胞菌富集的现象。
看来,我们要关注的致胖菌又多一个了!
参考资料:
[1]https://www.cell.com/cell-host-microbe/abstract/S1931-3128(24)00230-0
本文作者丨代丝雨
巨单胞菌属(Megamonas)
巨单胞菌属(Megamonas),厚壁菌门,梭状芽孢杆菌目的革兰氏阴性菌,发酵各种碳水化合物,终产物是乙酸、丙酸和乳酸。分离于人、动物和家禽的肠道。
巨单胞菌作为肠道核心种,可能是亚洲人种的特征。与炎症性肠病、结直肠癌、强制性脊柱炎(AS)、自闭症谱系障碍(ASD)、肥胖等疾病密切相关。
认识巨单胞菌属
巨单胞菌属(Megamonas)革兰氏阴性,专性厌氧,嗜中温,亲糖,不产芽孢,杆状,不产芽孢,不运动。分离于人、动物和家禽的肠道。
基于比较16S rRNA基因测序的系统发育分析表明,该菌种与“氨基酸球菌科(Acidaminococcaceae)” 的菌种聚为一类,故有研究者认为巨单胞菌属应归入厚壁菌门( Firmicutes )、巨单胞菌属的谱系中。
化能有机营养,发酵各种碳水化合物,终产物是乙酸、丙酸和乳酸。
属内成员有三个种:
Megamonas hypermegas(趋巨巨单胞菌)
Megamonas funiformis(单形巨单胞菌)
Megamonas rupellensis
此属的模式种为趋巨巨单胞菌 ( Megamonas hypermegale )。
目前该类型菌株M. funiformis JCM 14723、M. funiformis菌株1CBH44的完整基因组已被报道,从健康日本男性的人类粪便中分离出来。
Megamonas rupellensis sp. nov,一种从鸭子的盲肠中分离出来的厌氧菌。
巨单胞菌属增加相关
结直肠癌
宏基因组和代谢组学揭示早期结直肠癌患者的肠道微生物群特征,对616名参与者进行了粪便宏基因组和代谢组学研究。在代谢组学研究中,他们发现:
在19.2%的患者(616名中的118名)中,巨单胞菌属(Megamonas)数量非常丰富。但在以往欧美受试者的肠道微生物群研究中,巨单胞菌没有被报道为优势属,只在中国个体的研究中发现,这表明该属可能是亚洲人群的特征;但在另外一篇研究中表明,炎症性肠病患者巨单胞菌属度显著降低。
Yachida S, et al., Nat Med. 2019
Megamonas funiformis 可以作为区分胆囊切除术后病人与普通人的生物指标。其丰度与胆囊切除术后结直肠癌的发展有关。
没有癌前期病变或结直肠癌的胆囊切除术后病人比起有癌前期病变或结直肠癌的胆囊切除术后病人其Megamonas. funiformis丰度更高。
此外,研究发现巨单胞菌属(Megamonas)相对丰度与结直肠息肉发病风险增大呈负相关。
Ren, X et al., Frontiers in oncology. 2020
强制性脊柱炎(AS)
研究共纳入207名研究对象(包括103名AS患者和104名健康对照),结果显示巨单胞菌属(Megamonas)和链球菌属(Streptococcus)是强直性脊柱炎组中相对丰度增幅最大的2个属,通过聚类分析发现,巨单胞菌属的相对丰度在 AS、溃疡性结肠炎(ulcerative colitis,UC)、RA 及银屑病等病种组间的欧氏距离较近,而与Ⅱ型糖尿病及腺瘤较远。
蒋光明,安徽医科大学,2021
自闭症谱系障碍(ASD)
肠道微生物群的改变可能会影响自闭症谱系障碍(ASD),患者中可能出现胃肠道(GI)生态失调。研究发现在自闭症儿童粪便中Megamonas丰度显著高于健康儿童。同时在矮身材儿童组的Megamonas丰度显著高于健康组,表明维持一定丰度在巨单胞菌属在儿童神经和体格生长发育方面的重要作用。
Zou R, et al., Autism Res. 2020
注意缺陷/多动障碍 (ADHD)
注意缺陷/多动障碍(ADHD)是一种神经发育障碍,其特征在于持续存在注意力不集中、多动和冲动的症状,导致个体生活两个或更多区域的功能(ADHD)组在属水平上显示出较高水平的Dialister和Megamonas以及较低的Anaerotaenia 和 Gracilibacter 丰度。
Richarte V, et al., Transl Psychiatry. 2021
注意缺陷多动障碍患者巨单胞菌丰度提高。同时作者还指出巨单胞菌可作为区分多动症患者与正常人的指标之一。
肥胖
研究发现在肥胖和对照受试者之间微生物群的显着差异。肥胖组的Prevotella、巨型单胞菌(Megamonas)、梭杆菌属和Blautia显著增加。
Chiu, C.M., et al., BioMed research international, 2014
另外一项研究表明体重降低或营养不良与巨单胞菌丰度减少有关联。巨单胞菌的丰度与体重减轻率呈负相关,Megamonas的丰度与肥胖犬减重的速度呈负相关。
急性缺血性脑卒中(AIS)
急性脑卒中(AIS)是一类脑部血液供应障碍引起局部组织缺血缺氧性坏死、相应神经功能出现缺损的不可逆性损害的临床综合征。同健康组比较,AIS组患者肠道中巨单胞菌属相对丰度上调,大肠杆菌属相对丰度下调。
通过将健康组和AIS患者肠道中巨单胞菌属和大肠杆菌属相对丰度进行分析,发现二者相对丰度及比值对潜在AIS具有一定诊断效能,可作为潜在的AIS诊断指标。
抑郁
部分研究报道巨单胞菌属的丰度在抑郁症患者中增加。脑卒中后抑郁患者巨单胞菌属水平上均显著高于对照组。巨单胞菌属与精神分裂症阳性和阴性症状量表(PANSS)总分呈正相关。
但也有个别文献检测到其丰度在抑郁症患者中下降。实际变化需要进一步研究。
其他
在最近的一项研究中,根据16S rRNA测序结果,发现Megamonas、放线杆菌属、Dorea和Ruminococcus与男性血清睾酮浓度呈正相关。
在另一项关于肠道微生物群性别差异的研究中,发现Megamonas、Prevotella、梭杆菌属和Megasphaera在男性中比在女性中更丰富。前列腺特异性抗原(PSA)水平高(G3)组的Megamonas丰度低于中等PSA水平(G2)组;此外,观察到PSA水平与先前报道的其他属之间没有关联。暗示Megamonas在雄激素代谢中具有潜在积极作用。
Kim HN, et al., J Pers Med. 2021
巨单胞菌属减少相关(证据不充分)
虚弱
虚弱是一种常见的老年综合征,主要根据症状进行诊断和分期。以确定这种综合征的微生物生物标志物收集了94名社区居住的老年人的血清和粪便样本,采用16SrRNA扩增子测序法测定粪便微生物群的粪便组成。
与对照组相比,来自虚弱组的粪便样本下列菌群具有较高的水平:
Akkermansia, Parabacteroides, Klebsiella
而共生属较低水平菌群如下:
Megamonas, Faecalibacterium, Prevotella, Roseburia, Blautia
推测其中Megamonas减少与老年人虚弱症状有关。
Xu Y, et al., Front Cell Infect Microbiol. 2021
炎症性肠病,白塞病,肝病等
IBD患者肠道中巨单胞菌属相对丰度显著降低。
与 正常个体相比,白塞病患者肠道中巨单胞菌物种的相对丰度显着降低。这可能与白塞病患者代谢物改变导致的 T 细胞畸变有关。
代偿期肝硬化患者巨单胞菌丰度下降。
老年血液透析(HD)患者巨单胞菌属减少。
血肌酐升高和血液透析可能影响肠道菌群的生存环境心力衰竭组与对照组相比,巨单胞菌属丰度降低。
干预调节
▾ 该菌丰度较少相关:
动物脂肪摄入过多,肠道中产生短链脂肪酸(SCFAs) 的细菌(如Blautia、Megamonas)的丰度显着降低。
一项针对3500名加拿大儿童进行了从出生前直至青春期的持续追踪,其主要目标是为了发现过敏、哮喘、肥胖症及其它慢性疾病的根本原因。他们发现无论婴儿采用何种喂养方式(母乳喂养或配方奶喂养),直接补充维生素D滴剂的婴儿体内巨单胞菌属丰度都较低。
▴ 该菌丰度增加相关:
在体外发酵条件下,含牛肉蛋白和鸡肉蛋白组巨单胞菌属(Megamonas) 相对丰度显著增加,有益菌相对丰度增加。
饮食中豆类消费的高频率与Megamonas属呈正相关,但是目前该证据样本量太小,还需要进一步研究。
抗性淀粉(RS)在小肠中不能被酶解,大部分在结肠被肠道微生物发酵。研究显示玉米,马铃薯可以增加巨单胞菌属丰度。
岩藻糖基硫酸软骨素(fCS)是从海参中提取的一种独特的天然硫酸软骨素类似物,fCS-Sc显著增加了Megamonas(1.26倍)。
燕麦阿拉伯木聚糖 (AX) 刺激了鸭肠巨单胞菌和双歧杆菌的生长物种,其中巨单胞菌表现出最大的刺激。
在日粮中添加桑叶粉后,鸡肠道中的拟杆菌属、普氏菌和巨单胞菌属的相对丰度增加。
结 语
作为亚洲人肠道重要的菌属——巨单胞菌属,关于其与疾病的研究还处于开始阶段。部分数据能说明其与炎症性肠病、结直肠癌、强制性脊柱炎(AS)、肥胖、神经系统的相关性。但具体的因果关系与分子机制仍待研究,可能的研究方向有巨单胞菌的代谢产物短链脂肪酸在机体中的作用以及其与免疫反应互作反应。
p.s. 本文感谢提供部分资料的各位同学。
主要参考文献:
Richarte V, Sánchez-Mora C, Corrales M, Fadeuilhe C, Vilar-Ribó L, Arribas L, Garcia E, Rosales-Ortiz SK, Arias-Vasquez A, Soler-Artigas M, Ribasés M, Ramos-Quiroga JA. Gut microbiota signature in treatment-naïve attention-deficit/hyperactivity disorder. Transl Psychiatry. 2021 Jul 8;11(1):382. doi: 10.1038/s41398-021-01504-6. PMID: 34238926; PMCID: PMC8266901.
Yachida S, Mizutani S, Shiroma H, Shiba S, Nakajima T, Sakamoto T, Watanabe H, Masuda K, Nishimoto Y, Kubo M, Hosoda F, Rokutan H, Matsumoto M, Takamaru H, Yamada M, Matsuda T, Iwasaki M, Yamaji T, Yachida T, Soga T, Kurokawa K, Toyoda A, Ogura Y, Hayashi T, Hatakeyama M, Nakagama H, Saito Y, Fukuda S, Shibata T, Yamada T. Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer. Nat Med. 2019 Jun;25(6):968-976. doi: 10.1038/s41591-019-0458-7. Epub 2019 Jun 6. PMID: 31171880.
Ren, X., Xu, J., Zhang, Y., Chen, G., Zhang, Y., Huang, Q., & Liu, Y. (2020). Bacterial Alterations in Post-Cholecystectomy Patients Are Associated With Colorectal Cancer. Frontiers in oncology, 10, 1418. https://doi.org/10.3389/fonc.2020.01418
Duan, M., Wang, Y., Zhang, Q., Zou, R., Guo, M., & Zheng, H. (2021). Characteristics of gut microbiota in people with obesity. PloS one, 16(8), e0255446.
https://doi.org/10.1371/journal.pone.0255446
Chiu, C. M., Huang, W. C., Weng, S. L., Tseng, H. C., Liang, C., Wang, W. C., Yang, T., Yang, T. L., Weng, C. T., Chang, T. H., & Huang, H. D. (2014). Systematic analysis of the association between gut flora and obesity through high-throughput sequencing and bioinformatics approaches. BioMed research international, 2014, 906168. https://doi.org/10.1155/2014/906168
Elizabeth P. Cato, Ella M. Barnes. Designation of the Neotype Strain of Bacteroides hypermegas Harrison and Hansen. https://doi.org/10.1099/00207713-26-4-494
Zou R, Xu F, Wang Y, Duan M, Guo M, Zhang Q, Zhao H, Zheng H. Changes in the Gut Microbiota of Children with Autism Spectrum Disorder. Autism Res. 2020 Sep;13(9):1614-1625. doi: 10.1002/aur.2358. Epub 2020 Aug 24. PMID: 32830918.
Morotomi M, Nagai F, Sakon H. Genus Megamonas should be placed in the lineage of Firmicutes; Clostridia; Clostridiales; 'Acidaminococcaceae'; Megamonas. Int J Syst Evol Microbiol. 2007 Jul;57(Pt 7):1673-1674. doi: 10.1099/ijs.0.65150-0. PMID: 17625216.
Shimizu, J., Kubota, T., Takada, E., Takai, K., Fujiwara, N., Arimitsu, N., Ueda, Y., Wakisaka, S., Suzuki, T., & Suzuki, N. (2019). Relative abundance of Megamonas hypermegale and Butyrivibrio species decreased in the intestine and its possible association with the T cell aberration by metabolite alteration in patients with Behcet's disease (210 characters). Clinical rheumatology, 38(5), 1437–1445. https://doi.org/10.1007/s10067-018-04419-8
Romain Chevrot, Arnaud Carlotti, Valérie Sopena, Pierre Marchand, Eric Rosenfeld. Megamonas rupellensis sp. nov., an anaerobe isolated from the caecum of a duck. https://doi.org/10.1099/ijs.0.2008/001297-0
Cheung, S. G., Goldenthal, A. R., Uhlemann, A. C., Mann, J. J., Miller, J. M., & Sublette, M. E. (2019). Systematic Review of Gut Microbiota and Major Depression. Frontiers in psychiatry, 10, 34. https://doi.org/10.3389/fpsyt.2019.00034
Kelly, J. R., Minuto, C., Cryan, J. F., Clarke, G., & Dinan, T. G. (2017). Cross Talk: The Microbiota and Neurodevelopmental Disorders. Frontiers in neuroscience, 11, 490.
Kim HN, Kim JH, Chang Y, Yang D, Kim HL, Ryu S. Gut Microbiota Composition across Normal Range Prostate-Specific Antigen Levels. J Pers Med. 2021 Dec 17;11(12):1381. doi: 10.3390/jpm11121381. PMID: 34945854; PMCID: PMC8703440.